Specimen MA - M2
1)

initial momentum

$$
0.5 \times(-2 \theta i)=-10 i
$$

Final momentum

$$
-10 i+15 i+1 \theta j=5 i+1 \theta j
$$

Final Velocity

$$
\frac{1}{\theta .5}(5 i+1 \theta j)=1 \theta i+2 \theta j
$$

$$
\text { Final Speed }=\sqrt{1 \theta^{2}+2 \theta^{2}}
$$

$$
=\sqrt{5 \theta \theta}
$$

$$
=22.4 \mathrm{~ms}^{-1}(3 \mathrm{sf})
$$

2)

a)

$$
\begin{aligned}
& \underset{\substack{40 \theta \mathrm{~ms} \\
6 \times 10^{-3} \mathrm{~kg}}}{\text { initial KE: }} \\
& \frac{1}{2} 6 \times 1 \theta^{-3}(4 \theta \theta)^{2}=48 \theta j
\end{aligned}
$$

Final HE:

$$
\frac{1}{2} 6 \times 10^{-3}(25 \theta)^{2}=187.5 \mathrm{~J}
$$

work done by Force $=48 \theta-187.5$

$$
\begin{aligned}
& =292.5 \mathrm{~J} \\
& =0.02 \mathrm{~m} \times \mathrm{N} \\
\frac{292.5 \mathrm{~J}}{\theta .02 \mathrm{~m}} & =14,625 \mathrm{~N} \\
& =14,60 \theta \mathrm{~N}(3 f)
\end{aligned}
$$

3)

a)

$$
\begin{aligned}
V & =\frac{d}{d t} r \\
& =\left(3 t^{2}-3\right) i+8 t j
\end{aligned}
$$

b) $\quad\left(3 t^{2}-3\right) i+8 t j=K(i+j)$
where $1 T$ is constant

$$
\begin{aligned}
& 3 t^{2}-3=8 t \\
& 3 t^{2}-8 t-3=0 \\
& \frac{8 \pm \sqrt{64--36}}{6}=\frac{8 \pm 10}{6} \\
& t=3,-\frac{1}{3} \\
& t \geqslant 0 \therefore t \neq \frac{1}{3} \\
& t=3
\end{aligned}
$$

PhysicsAndMathsTutor.com
4)
a)

We Rnow

$$
R-m y-3 m g=\theta
$$

$$
\begin{aligned}
& \theta^{c}<\alpha<\frac{\pi^{c}}{2} \\
& \theta<a \\
& \theta<m \\
& \quad g=9.8
\end{aligned}
$$

$$
\therefore R=4 m g
$$

$$
\begin{aligned}
F_{m a x} & =F \\
& \leqslant \mu R \\
& \leqslant \frac{1}{4} 4 m g \\
& \leqslant m g
\end{aligned}
$$

momonts around centre of Rod

$$
\begin{aligned}
& \text { 亿momonts }=5 \text { moments } \\
& a R \sin (\alpha)+a 3 m y \sin (\alpha)=a F_{\max } \cos (\alpha)+a F \cos (\alpha) \\
& 4 a m y \sin (\alpha)+3 a m g \sin (\alpha) \leqslant a m g \cos (\alpha)+a m g \cos (\alpha) \\
& 7 \sin (\alpha) \leqslant 2 \cos (\alpha) \\
& \tan (\alpha) \leqslant \frac{2}{7}
\end{aligned}
$$

PhysicsAndMathsTutor.com

At $12 \mathrm{~ms}^{-1}, 12 \mathrm{~m}$ are travelled parallel to F in 1 s

$$
\begin{aligned}
\therefore \text { Work done by } F & =2 \theta \theta \theta N \times 12 \mathrm{n} \\
& =24, \theta \theta \theta \mathrm{~J}
\end{aligned}
$$

At $12 \mathrm{~ms}^{-1}, 12^{*} \sin (\alpha) \mathrm{m}$ are travelled parallel to F in 1 s

$$
\therefore \text { work done by } \begin{aligned}
w & =480 \theta g \times \frac{12}{20} \\
& =28,2243
\end{aligned}
$$

$$
\begin{aligned}
& P=E t \\
& P=52,224, \times 1 \mathrm{~s}
\end{aligned}
$$

$$
P=52.2 \mathrm{~kW}
$$

b)

Kinetic energy gained in 1 second = Energy from engine - Work done by F

$$
\begin{aligned}
& P=52,224-24,000=28,244 \mathrm{w} \\
& F=P \times V \& F=m a \therefore \frac{P}{V m}=a \\
& \frac{28,244}{12 \times 4800}=0.49 \mathrm{~ms}^{2}
\end{aligned}
$$

At max speed, power for the engine produces a force equal to F

$$
\begin{aligned}
52,224 & =2 \theta \theta \theta V \\
V & =26.112 \mathrm{~ms}^{-1} \\
V & =26 \cdot 1_{-1}^{-1}(3 \mathrm{sf}
\end{aligned}
$$

C)

Air resistance would cause the ball to decelerate in the direction of motion

PhysicsAndMathsTutor.com
7)

Let F be the mid-point of AE so that $\mathrm{AF}=\mathrm{FE}$
The lamina is symmetrical around FC therefore COM lies on FC

Centre of mass a square lamina lies at the interception of its 2 lines of symmetry (the perpendicular bisectors of $A E$ and $A B$)
Centre of mass of a triangular lamina lies $2 / 3$ along the median line form each vertex. Since $B C D$ is symmetrical along the perpendicular bisector of $B D$, then this line is the median line from C. Therefore, the COM of $B C D$ lies $2 / 3$ of the way towards BD, along line FC.

$$
\frac{2}{3} h=8 \mathrm{~cm}
$$

$$
\begin{aligned}
r & =\frac{18}{2} \\
& =9 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\text { area of } A B D E & =18^{2} \text { area of } B C D \\
& =324 \mathrm{~cm}^{2} \\
& =108 \times 12 \\
& =10 \mathrm{~cm}^{2} \\
(108+324) \bar{x} & =324 \times 9+108 \times[18+(12.8)] \\
\bar{x} & =\frac{2916+2376}{432} \\
\bar{x} & =12.25 \mathrm{~cm}
\end{aligned}
$$

PhysicsAndMathsTutor.com
7)
b)

$$
\begin{aligned}
0 & =18-12.25 \quad a=9 \mathrm{~cm} \\
& =5.75 \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
\tan (\alpha) & =\frac{0}{a} \\
& =\frac{5.75}{9}
\end{aligned}
$$

$$
\alpha=32.6^{\circ}
$$

PhysicsAndMathsTutor.com
8)
a)

$$
\begin{aligned}
& \underset{\substack{A \\
3 M}}{ } \quad \underset{ }{n} \quad \rightarrow+v e \\
& \text { m } \\
& 2 \mathrm{~m} \\
& \text { Before }
\end{aligned}
$$

$$
\begin{aligned}
& e=\frac{V_{B}--V_{A}}{3 u \ldots u} \\
& \text { Hen }=V_{B}+V_{A} \\
& \text { momentum is conserved } \\
& 3 m u+2 m(-u)=m u \\
& \therefore-m v_{A}+2 m V_{B}=m u \\
& 2 V_{B}-u=V_{A} \\
& 4 e u=v_{13}+2 v_{13}-u \\
& 4 \text { en }+u=3 V_{B} \\
& V_{B}=\frac{1}{3}(1+4 e) u
\end{aligned}
$$

8) V_{A} is positive because we state it is going in the negative direction (see $*$)
b)

$$
\begin{aligned}
& 2 V_{13}-u=V_{A} \quad \& V_{A}>\theta \\
& \therefore 2\left[\frac{1}{3}(1+4 e) u\right]-u>0 \\
& \frac{2}{3}(1+4 e) u>u
\end{aligned}
$$

u is positive because if it was negative, A and B would never collide
$2 / 3$ is also positive

$$
1+4 e>\frac{3}{4}
$$

$$
4 e>\frac{7}{2}
$$

$e>\frac{1}{8}$
C)

$$
\begin{aligned}
& \frac{1}{2}=\frac{w}{v_{3}} \\
& w=\frac{1}{6}(1+4 e) u
\end{aligned}
$$

For a collision to occur $w>V_{A}$

$$
\begin{aligned}
& \frac{1}{6}(1+4 e) u>\frac{2}{3}(1+4 e) u-u \\
& u+4 e n>4 u+16 e u-6 u \\
& 3 u>12 e u \\
& \frac{1}{4}>e
\end{aligned}
$$

